2、函数

调用函数 #

# 调用函数bas
>>> abs(100)
100
>>> abs(-20)

>>> a = abs # 变量a指向abs函数
>>> a(-1) # 所以也可以通过a调用abs函数
1

数据类型转换,Python内置常用的数据类型转换函数:

>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
>>> str(1.23)
'1.23'
>>> str(100)
'100'
>>> bool(1)
True
>>> bool('')
False

定义函数 #

定义一个函数要使用def语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回。

def my_abs(x):
    if x >= 0:
        return x
    else:
        return -x

如果没有return语句,函数执行完毕后也会返回结果,只是结果为None。return None可以简写为return。

空函数 #

def nop():
    pass

pass语句什么都不做,那有什么用?实际上pass可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个pass,让代码能运行起来。

pass还可以用在其他语句里,比如:

if age >= 18:
    pass

缺少了pass,代码运行就会有语法错误。

参数检查 #

让我们修改一下my_abs的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance()实现:

def my_abs(x):
    if not isinstance(x, (int, float)):
        raise TypeError('bad operand type')
    if x >= 0:
        return x
    else:
        return -x

返回多个值 #

import math

def move(x, y, step, angle=0):
    nx = x + step * math.cos(angle)
    ny = y - step * math.sin(angle)
    return nx, ny
    
>> x, y = move(100, 100, 60, math.pi / 6)
>>> print(x, y)
151.96152422706632 70.0

# 但其实这只是一种假象,Python函数返回的仍然是单一值:
>>> r = move(100, 100, 60, math.pi / 6)
>>> print(r)
(151.96152422706632, 70.0)

函数参数 #

位置参数 #

def power(x, n):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s

power(x, n)函数有两个参数:x和n,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数x和n。

默认参数 #

  • 必选参数在前,默认参数在后
  • 如何设置默认参数,当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
def power(x, n=2):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s
    
def enroll(name, gender, age=6, city='Beijing'):
    print('name:', name)
    print('gender:', gender)
    print('age:', age)
    print('city:', city)

也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll(‘Adam’, ‘M’, city=‘Tianjin’),意思是,city参数用传进去的值,其他默认参数继续使用默认值。

可变参数 #

# 参数numbers接收到的是一个tuple
def calc(*numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum
    
>>> calc(1, 2)
5
>>> calc()
0
#*nums表示把nums这个list的所有元素作为可变参数传进去
>>> nums = [1, 2, 3]
>>> calc(*nums)
14

关键字参数 #

关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。

# 函数person除了必选参数name和age外,还接受关键字参数kw
def person(name, age, **kw):
    print('name:', name, 'age:', age, 'other:', kw)
    
>>> person('Michael', 30)
name: Michael age: 30 other: {}
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

# **extra表示把extra这个dict的所有key-value用关键字参数传入到函数的**kw参数,kw将获得一个dict,注意kw获得的dict是extra的一份拷贝,对kw的改动不会影响到函数外的extra
>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **extra)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

命名关键字参数 #

对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过kw检查。

命名关键字参数需要一个特殊分隔符**后面的参数被视为命名关键字参数

def person(name, age, **kw):
    if 'city' in kw:
        # 有city参数
        pass
    if 'job' in kw:
        # 有job参数
        pass
    print('name:', name, 'age:', age, 'other:', kw)
# 调用者仍可以传入不受限制的关键字参数
>>> person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)

#要限制关键字参数的名字,就可以用命名关键字参数
def person(name, age, *, city, job):
    print(name, age, city, job)
>>> person('Jack', 24, city='Beijing', job='Engineer')
Jack 24 Beijing Engineer

# 如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*了
def person(name, age, *args, city, job):
    print(name, age, args, city, job)

# 命名关键字参数可以有缺省值
def person(name, age, *, city='Beijing', job):
    print(name, age, city, job)
>>> person('Jack', 24, job='Engineer')
Jack 24 Beijing Engineer

参数组合 #

可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。

def f1(a, b, c=0, *args, **kw):
    print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)

def f2(a, b, c=0, *, d, **kw):
    print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)
    
>>> f1(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> f1(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> f1(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> f1(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
>>> f2(1, 2, d=99, ext=None)
a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}

>>> args = (1, 2, 3, 4)
>>> kw = {'d': 99, 'x': '#'}
>>> f1(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
>>> args = (1, 2, 3)
>>> kw = {'d': 88, 'x': '#'}
>>> f2(*args, **kw)
a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}

对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。

递归函数 #

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1)
    
>>> fact(1)
1
>>> fact(5)
120

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

def fact(n):
    return fact_iter(n, 1)

def fact_iter(num, product):
    if num == 1:
        return product
    return fact_iter(num - 1, num * product)

可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1num * product在函数调用前就会被计算,不影响函数调用。

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。